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We measured the temperature-dependent infrared reflectivity spectra of MnF2 between 4 and 600 K. We
show that the phonon spectrum undergoes a clear renormalization at TN. The ab initio calculation we per-
formed on this compound accurately predicts the magnitude and the direction of the changes in the phonon
parameters across the antiferromagnetic transition, showing that they are mainly induced by the magnetic
order. In this material, we found that the dielectric constant is mostly from phonon origin. The large change in
the lattice parameters with temperature seen by x-ray diffraction as well as the A2u phonon softening below TN

indicate that magnetic order induced distortions in MnF2 are compatible with the ferroelectric instabilities
observed in TiO2, FeF2 and other rutile-type fluorides. This study also shows the anomalous temperature
evolution of the lower energy Eu mode in the paramagnetic phase, which can be compared to that of the B1g

phonon seen by Raman spectroscopy in many isostructural materials. This was interpreted as being a precursor
of a phase transition from rutile to CaCl2 structure which was observed under pressure in ZnF2.
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I. INTRODUCTION

In magnetoelectric multiferroic materials, ferroelectricity
coexists with a magnetic order. Based on the origin and
strength of the coupling between the ferroelectric and the
magnetic order parameters, these materials can be divided up
into two general classes.1 In type-I multiferroics, such as
BiFeO3,2,3 ferroelectric and �anti�ferromagnetic transitions
are independent and weakly coupled. In type-II multiferroics,
such as TbMnO3,4 ferroelectricity is a consequence of the
magnetic ordering and a strong magnetoelectric coupling is
present. In the latter compounds, the interaction between
magnetic ordering and the lattice may generate the structural
distortions leading to the appearance of a permanent electri-
cal polarization. Although the microscopic origins for this
magnetoelectric coupling are still under debate, the appear-
ance of an electrical dipole moment has important conse-
quences on the polar, infrared active, phonon spectra. Very
few studies of the phonon changes in these type-II multifer-
roics exist to date. Nevertheless, Schmidt et al.5 showed that
in TbMnO3 phonon parameters are renormalized by about
1–2 % and that the changes are linked to TN rather than the
ferroelectric transition.

Before tackling the structurally complex type-II multifer-
roics, it is interesting to see the effect of magnetic ordering
on the infrared phonon response. Several infrared studies on
spinels,6–8 showed that the magnetic ordering leads to infra-
red phonon splitting. However, the phonon splitting has sys-
tematically been attributed to the magnetic frustration
present in these compounds, a vision supported by ab initio

calculations.9 Previous studies on antiferromagnetic �AFM�
MnO �Ref. 10� and CoO �Ref. 11� showed a strong phonon
renormalization at TN. However, both materials also undergo
a structural phase transition from cubic to rhombohedral
�MnO� or tetragonal �CoO� at TN. These phase transitions
make it harder to separate what is the pure magnetic effect
on phonons from what is due to the structural symmetry
change.

In this perspective, manganese fluoride �MnF2� emerges
as a system of choice, once it is a very well characterized
commensurate antiferromagnet with TN=68 K.12 Its simple
paramagnetic rutile structure13 �P42

/mnm or D4h
14� remains

the same below TN, where the spins align antiferromagneti-
cally along the D4 axis. Hence effects on the phonon spectra
have a magnetic origin.

Temperature-dependent Raman spectra of MnF2 show
phonon frequency changes at TN.14 As this material has an
inversion center, Raman-active phonons are not infrared ac-
tive and vice versa. Therefore, detailed knowledge of infra-
red phonons in MnF2 is paramount to grasp changes that
would affect dielectric ordering below TN. We expect that
these data on MnF2 help to set a baseline to understand the
effect on phonons of the magnetic transitions in type-II mul-
tiferroic materials.

To date, only the room-temperature infrared phonon spec-
tra have been measured for MnF2.15 According to dilatomet-
ric measurements16 MnF2 lattice parameters are renormal-
ized across the antiferromagnetic transition. This
magnetostrictive effect is the hallmark of the coupling be-
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tween dipole excitations and magnetic order in this com-
pound.

Although MnF2 is a classical antiferromagnet, it is closely
related to multiferroic materials. Its isostructural compound
TiO2 is a quantum paraelectric �incipient ferroelectric� as
determined by infrared,17 Raman and dielectric
measurements,18 as well as ab initio calculations.19 Similar
responses, in particular, renormalization of the phonon spec-
tra, were observed in other rutile fluorides such as FeF2,20

ZnF2,21 and NiF2.22

In this paper we show a detailed, temperature-dependent
infrared study of the phonon spectra in MnF2 along the ab
plane and the c axis. Our results show that the phonon spec-
tra have marked changes at TN. The infrared data are comple-
mented by low-temperature x-ray diffraction and ab initio
calculations. First-principles calculations predict the proper
phonon frequencies for both directions and find the correct
frequency shifts at TN. Our results show that the dielectric
constant of MnF2 is mostly from phonon origin. The large
change in the lattice parameters with temperature and pho-
non softening in the antiferromagnetic phase suggest that
MnF2 distortions are compatible with the ferroelectric insta-
bilities observed in TiO2,19 FeF2,20 and ZnF2.21

II. METHODS

The MnF2 single crystal used in this experiment was
grown by the Czochralski method. X-ray and infrared mea-
surements were done on different platelets cut from the same
bulk and containing ac and ab planes. The ac sample for
optical measurements was polished with a 15° wedge to
avoid interference fringes from the back surface reflectance.
The measured faces for both optical samples were polished
with 1 �m diamond powder to a mirrorlike surface. Typical
sample surface sizes are 5�5 mm2. Their antiferromagnetic
transition was measured on a Quantum Design MPMS-5
squid magnetometer with a magnetic field of 1000 G. Figure
1 shows the magnetic susceptibility ��� measured with the
field applied parallel and perpendicular to the c axis. The
H �c curve shows a classical antiferromagnetic ordering be-
havior where � decreases below TN reaching a vanishingly
small value at T=0 K. This indicates a negligible amount of
impurities in this sample. When H�c, � is dominated by a
spin canting response below TN.

We measured the infrared reflectivity spectra near normal
incidence at 31 different temperatures between 4 and 300 K,
on the ac plane sample with the electric field of light parallel
and perpendicular to the c direction �D4 axis�. To determine
the absolute reflectivity, we used an in situ gold overfilling
technique.23 The sample is attached to a cold finger of an
ARS Helitran cryostat and we measure its reflectivity with
respect to a reference stainless mirror for all temperatures.
We then evaporate a thin layer of gold on the sample pro-
ducing a mirror with the same surface quality and shape as
the sample. The reflectivity of this gold mirror is measured,
at several temperatures, against the same stainless-steel ref-
erence and the infrared spectrum is obtained by dividing the
uncoated sample by its coated version. Finally, we multiply
the result by the absolute reflectivity of gold to get the abso-

lute reflectivity of the sample. The accuracy of the absolute
reflectivity is better than 1% and the relative error between
different temperatures is on the order of 0.1%. The far-
infrared �10–700 cm−1� data were collected with a Bruker
IFS113v interferometer. Higher frequency spectra
�500–7500 cm−1� were obtained with a Bruker IFS66v
spectrometer. In the overlapping region the spectra agree
within 0.5%.

We also measured the reflectivity of the ab sample, in the
�100–700 cm−1� range, at high temperatures �300–600 K�
with a TS-1500 Linkam hot stage. No polarization was used
in these measurements as a and b are equivalent axes. An Al
mirror served as a reference. As no in situ gold evaporation
was used above room temperature, the data were corrected so
that 300 K measurements in the cryostat and in the hot stage
match.

X-ray diffraction measurements were carried out on the
National Synchrotron Light Source beamline X21. A Si�111�
double-crystal monochromator was used to set the incident
energy of the beam to 11.5 or 13.5 keV and a Pt-coated
mirror focused the beam down to �1 �vertical� by 2 �hori-
zontal� mm2. The MnF2 crystals were inserted in an Oxford
superconducting magnet, which is mounted on a two-circle
diffractometer with a horizontal scattering geometry. A
LiF�200� analyzer was used, and two parallel reflections
were measured for both ac and ab plane samples to obtain
the a�=b� and c lattice parameters.

These measurements were complemented with ab initio
density-functional calculations. In order to study the effects
of the magnetic order on the phonon parameters, we per-
formed the geometry optimization and phonon calculations
for two different spin configurations. The first one is a true
ferromagnetic �FM� configuration with all spins aligned. The
second configuration is a pseudo-AFM configuration where
nearest-neighbor spins are antialigned, as shown in Fig. 1
�up-down configuration�. This configuration is only pseudo-
AFM since it is not an eigenfunction of the total spin opera-
tor. The true antiferromagnetic state is a superposition of the
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FIG. 1. �Color online� Magnetic susceptibility of MnF2 mea-
sured with H=1000 gauss. The solid �blue� line is the data for H�c
and the dashed �red� line is obtained for H �c. The diagram repre-
sents the lattice and magnetic structure of the rutile tetragonal
phase, where a=b=4.874 Å and c=3.300 Å.
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up-down and down-up configurations, as well as quantum
fluctuations on them. Such a correct calculation is unfortu-
nately not feasible for an infinite system. The calculations
were done using the CRYSTAL06 package.24 Three different
functionals were used for the calculations, namely, local-
density approximation �LDA�, and two hybrid functionals
B3LYP �Ref. 25� and B1PW.26 An atomic basis set of va-
lence 2-� quality27 and small core pseudopotentials28 were
used for the Mn2+ ions and an all electrons basis of 3-�
quality was used for the F− ions.29 As usual, the LDA func-
tional underestimates the lattice parameters by a few percent
while the two other functionals slightly overestimate them.
The best fit is reached for the B1PW functional with an error
of 0.2% in the a ,b direction and 1% in the c direction. All ab
initio results further presented in the paper will thus refer to
the B1PW functional.

III. RESULTS

The solid lines in the top panel of Fig. 2 show the infrared
reflectivity at selected temperatures with the electric
field of light lying on the ab plane. These spectra show
three clear phonon peaks. The solid lines in the bottom
panel are the reflectivity for E �c and show a single phonon
along this direction. The infrared modes found agree with
group theory predictions. Indeed, the irreducible
representation decomposition for the rutile structure is
A1g � A2g � 2A2u � B1g � 2B1u � B2g � Eg � 4Eu. Four of these
modes are Raman active—A1g, B1g, B2g, and Eg—and four
are infrared �IR� active—3Eu � A2u. The Eu modes are xy
degenerate and represent the ab plane spectra. From low to
high frequencies, we define these modes as Eu1, Eu2, and Eu3.
The A2u mode has z symmetry and is the only phonon along
the c axis.

To extract quantitative information from these data, we
simulated the spectra with a multiple Lorentz oscillator
model for the dielectric function

���� = �� + �
k

	�k
TOk

2


TOk

2 − �2 − i�k�
, �1�

where �� is the contribution from electronic transitions to the
dielectric function and each phonon is described by a reso-
nance frequency 
TOk

, an oscillator strength 	�k, and damp-
ing �k. The reflectivity at normal incidence is given by
R= �1−���2 / �1+���2.

Typical fitting results are shown as dotted lines in both
panels of Fig. 2. Overall, the model reproduces the data very
well. However, modes Eu3 and A2u, as well as Eu1 at high
temperatures, have structures that cannot be reproduced by
the Lorentz model. This structure is likely related to a break-
down of the harmonic approximation30 and/or two-phonon
absorption,31 even though we cannot rule out the presence of
a small symmetry-breaking lattice distortion. Nevertheless,
in general, the parameters obtained through a Lorentz mod-
eling of the data assuming a D4h

14 symmetry are a very good
first approximation.

To ascertain that this is the case with our data, we also
used Kramers-Kronig transformations, which are model in-

dependent. These transformations require knowledge of the
reflectivity in the full spectral range, from zero to infinity. As
our measurement range is limited, we extrapolated the low-
frequency range as a constant reflectivity. For high frequen-
cies we used a constant up to 80 000 cm−1 followed by a
free-electron approximation �R��−4�. The 80 000 cm−1

limit was chosen to avoid unphysical negative values �albeit
within error bars� in the imaginary part of the dielectric func-
tion ��2�.

In Fig. 3 we compare Kramers-Kronig results to Lorentz
fit parameters. The left panel shows �2 for the Eu1 mode. For
clarity, each curve was normalized by its maximum value
and shifted vertically by an amount proportional to its tem-
perature. The peak in �2 happens at the phonon resonance
frequency. The squares are the 
TO frequencies obtained
from the Lorentz fits to the data. Although a small difference
in frequency is seen, both methods give the same tempera-
ture dependence and magnitude of the changes in the phonon
features. The right panel presents the same comparison for

FIG. 2. �Color online� Reflectivity with light polarized in the ab
plane �top panel� and along the c axis �bottom panel� for MnF2. The
solid lines are experimental results and the dotted lines are Lorentz
fits using Eq. �1�. In each panel, the dashed line is the reflectivity
predicted by ab initio calculations. These curves were generated by
plugging into Eq. �1� the first-principles values for 
TO and 	� and
using the � values obtained from the experimental fits at 5 K. The
ab initio values come from the AFM calculation.
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the lone A2u phonon. This figure shows that, even though Eq.
�1� neglects anharmonic effects, its outcoming parameters
are representative of the physical properties of MnF2. We
also checked that comparison of the Lorentz fits to other
methods such as four-parameter simulations32 and mul-
tioscillator fits33 give the same results. Henceforth we will
discuss our results using the Lorentz oscillator model alone.

We performed ab initio calculations to predict the values
of infrared-active phonon frequencies and oscillator
strengths. The results of these calculations for the infrared-
active modes are shown as dashed lines in both panels of
Fig. 2. For reference, the results for all modes are given in
the Appendix. The ab initio frequencies are between 2% and
12% higher than the measured ones. Except for the very
weak Eu2 phonon, the predicted strenghs are underestimated
by 4–35 %. Nevertheless, the calculated spectra describe
very well the overall phonon response. Table I summarizes
the fitting parameters produced by Eq. �1� at 5, 100, and 300
K. It also shows the ab initio results for 
TO and 	� in the
FM and AFM configurations defined in Sec. II

X-ray diffraction results are presented on Fig. 4 where we
plot the relative change in both lattice parameters as a func-
tion of temperature. We also plot in this figure the relative
change in the unit-cell volume given by 	V /V=2�	a /a�
+ �	c /c�+ �1+ �	c /c�	�	a /a�2+2�	a /a��	c /c�. The c lat-
tice parameter, as expected, increases monotonically with
temperature. The AFM transition has a clear effect on this
parameter which shows a kink at TN. The most striking fea-
ture of this plot is the anomalous behavior of the a lattice
parameter which increases with decreasing temperature and
shows absolutely no feature at TN. Despite the anomalous a
axis behavior, the total volume of the lattice still increases
with increasing temperature. It is also worth mentioning that
no change was observed on lattice parameters when a 3 T
magnetic field is applied.

IV. DISCUSSION

As a general rule, a crystalline lattice will contract upon
cooling the sample. At a magnetic transition further modifi-
cations of the crystalline parameters are induced by the mag-
netic energy change. Indeed, following the classical work of
Baltensperger and Helman34 one can derive the modification
of the lattice parameters induced by the magnetic ordering
�at a given temperature T below TN� by the minimization of
the free energy �F�. Below TN, the entropy term of the free
energy is negligible and F can be written as the sum of the
magnetic �EM� and the elastic �Ee� energies. A Taylor’s ex-

TABLE I. Lorentz fit parameters at 5, 100, and 300 K and ab initio results for the phonon frequencies and oscillator strengths. Units for

TO and � are cm−1. FM and AFM configurations are defined in Sec. II. Fitted values for �� are 2.16 for the ab plane and 2.25 along the
c axis.

5 �K� 100 �K� 300 �K� AFM FM


TO 	 � 
TO 	 � 
TO 	 � 
TO 	 
TO 	

A2u 292.5 3.93 4.37 293.2 3.92 6.42 289.6 4.01 16.01 311.0 2.53 315.1 1.74

Eu1 158.4 3.56 0.25 157.3 3.66 0.96 158.5 3.59 3.48 178.2 2.68 175.2 2.71

Eu2 259.8 0.08 1.56 258.9 0.08 2.48 255.1 0.09 6.88 265.7 0.06 265.5 0.06

Eu3 367.0 1.48 7.00 363.3 1.50 9.47 357.9 1.51 21.70 394.6 1.20 387.7 1.17

FIG. 3. �Color online� The left panel shows �2 spectra obtained
by Kramers-Kronig transformation �solid curves� for phonon Eu1

and the right panel for phonon A2u. For clarity, each �2 curve was
normalized by its maximum value then shifted vertically by a value
proportional to its temperature �the curves are placed so that their
maxima coincide with the temperature scale shown�. The squares
are 
TO frequencies obtained from the Lorentz fits and are shown in
a temperature vs frequency plot. In a perfect agreement between
Lorentz and Kramers-Kronig analysis, each square would sit ex-
actly on the maximum of a curve.

FIG. 4. �Color online� Relative changes in a and c lattice pa-
rameters measured by x-ray diffraction. We also show the resulting
relative variation in the unit-cell volume �open triangles�.
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pansion of F as a function of the lattice parameters a and c
yields

F�a,c� 
 E�a,c� = EM�a,c� + Ee�a,c�

=�E +
�E
�a

da +
�E
�c

dc + ¯�
�aN,cN�

, �2�

where �aN ,cN� are the lattice parameters at T�TN in the
antiferromagnetic phase. Naming a0 ,c0 the lattice parameters
at the same temperature in a hypothetic paramagnetic phase,
one gets

�E
�a

�aN,cN� = 0 = � �E
�a

+
�2E
�a2	a +

�2E
�a � c

	c�
�a0,c0�

�E
�c

�aN,cN� = 0 = � �E
�c

+
�2E

�a � c
	a +

�2E
�c2 	c�

�a0,c0�
�3�

and thus

	a = aN − a0 =
�E
�a

�2E
�c2 −

�E
�c

�2E
�a � c

� �2E
�a � c

�2

−
�2E
�a2

�2E
�c2


�a0,c0�

	c = cN − c0 =
�E
�c

�2E
�a2 −

�E
�a

�2E
�a � c

� �2E
�a � c

�2

−
�2E
�a2

�2E
�c2


�a0,c0�

. �4�

The elastic energy per unit cell can be estimated following
the classical way of Ref. 34

Ee =
V

2�
�	V

V
�2

, �5�

where V is the unit-cell volume and � the compressibility
coefficient.

Figure 5 and Table II show the definitions for the local

quantification axes �x, y, and z� of each Mn atom in the
unit-cell framework. The local Mn �x ,y� plane is defined by
the in-plane �equatorial� fluorine atoms of the distorted octa-
hedra �shown as the thick line in Fig. 5�, which have the
strongest metal-ligand interactions. Note that the two man-
ganese atoms of the unit cell have different local quantifica-
tion axes. Using this definition, the magnetic energy can be
expressed as

EM = − 8J�S�Mn1
· S�Mn2

� . �6�

It is important to notice that in the case of MnF2, where the
interactions are antiferromagnetic, both J and �S�Mn1

·S�Mn2
�

are negative. J can be decomposed into its main superex-
change coupling. Using the local quantification axes defined
in Fig. 5 and Table II, we determined the superexchange
coupling paths and their associated perturbative contribu-
tions pictured in Table III. The sum of these terms leads to,

J = − exp�− 2��da + de�	

��A0 + A2 cos2 � + A4 cos4 � + A6 cos6 �� . �7�

da and de represent the apical and equatorial Mn-F distances.
� is the angle Mn1-F-Mn2. Although the absolute values of
the Ai coefficients are difficult to determine, we can estimate
their relative values. We found A4�−A6�102A2�103A0.
Therefore the last two terms in Eq. �7� dominate the value of
J.

We can use the above equations to obtain a rough evalu-
ation of the derivatives in Eq. �4�. We find that the first
derivatives are of the same sign and order of magnitude. This
is also the case for �2E /�a�c and �2E /�c2. On the contrary,
�2E /�a2 is nearly an order of magnitude larger than the other
second derivative and of opposite sign. The reason is that
only in the latter term magnetic and elastic contributions do
not contribute with opposite signs. These estimations lead to
a very weak value for 	a while 	c is much larger and of
opposite sign, in agreement with the x-ray measurements
shown in Fig. 4.

As the atoms get closer to each other, the interaction
forces between them get stronger and, in the harmonic ap-
proximation, so does the spring constant ��� between ions.
As phonon frequencies follow ��� /� �� being a reduced
mass�, in a first approximation we expect them to follow the
thermal evolution of the unit-cell volume. Figure 4 shows
that the volume of the MnF2 lattice increases with tempera-

TABLE II. Local quantification axes of the two Mn atoms in the
unit cell. The unit-cell framework is expressed in terms of its main
a, b, and c directions whereas x, y, and z refer to the local Mn
quantification axes.

Direction in the unit-cell framework

Local axes Mn1 �0, 0, 0� Mn2 �1/2, 1/2, 1/2�

x� �−a� +b�� /�2 �a� +b�� /�2

y� c� −c�

z� �a� +b�� /�2 �−a� +b�� /�2
FIG. 5. �Color online� Structure of MnF2 highlighting the two

possible orientations for the MnF6 coordination octahedra. The
thick dark lines connect the in-plane F atoms. The local quantifica-
tion axes orientations for Mn1 and Mn2 atoms are shown as black
arrows. The lattice coordinates framework is defined by the arrows
labeled a, b, and c.
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ture. Therefore, we expect phonon frequencies to decrease
with increasing temperature. Figures 6 and 7 show the ther-
mal evolution of phonon frequencies for MnF2. Phonons Eu2
and Eu3 show the expected frequency softening with increas-
ing temperature over the whole measured range. Phonon A2u
also behaves conventionally but only above TN.

Phonon Eu1, on the other hand, has an anomalous thermal
evolution as its frequency softens with decreasing tempera-
ture. This behavior is analogous to that reported for the B1g
mode seen by Raman spectroscopy in MnF2 �Ref. 14� and
other rutile-type fluorides such as ZnF2,21 FeF2,20 NiF2,22 and
MgF2.35 This mode seems to be more influenced by the a

TABLE III. �Color online� Main AFM coupling paths between adjacent Mn atoms. The Mn d orbitals are
written in terms of their local axes �see Table II and Fig. 5� and the F p orbitals in terms of Mn2 local axes.
The horizontal and vertical axes in pictures correspond to the a� +b� and −c� lattice directions, respectively.

AFM coupling path J contribution scales as �fourth-order perturbation�

−�Mn1 3dz2 �F 2px�2� �F 2px �Mn2 3dz2�2

−�Mn1 3dz2 �F px�2� �F px �Mn2 3dx2−y2�2

−�Mn1 3dz2 �F px�2� �F px �Mn2 3dxy�2

−�Mn1 3dxz �F 2pz�2� �F 2pz �Mn2 3dxz�2

−�Mn1 3dxz �F 2pz�2� �F 2pz �Mn2 3dyz�2

−�Mn1 3dyz �F 2py�2� �F 2py �Mn2 3dz2�2

−�Mn1 3dyz �F 2py�2� �F 2py �Mn2 3dx2−y2�2

−�Mn1 3dyz �F 2py�2� �F 2py �Mn2 3dxy�2
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parameter rather than the whole unit-cell volume. The un-
conventional lattice-parameters thermal evolution and this
anomalous phonon behavior are strong indications of large
lattice instabilities.

The existence of these lattice instabilities is emphasized
by Raman scattering under pressure. In ZnF2 the softening of
the B1g Raman mode with decreasing temperature is also
observed by applying pressure at room temperature. This
pressure induced phonon softening is a precursor of a phase
transition from rutile to a CaCl2 structure at 4.5 GPa.36 Bril-
louin scattering measurements37 showed that MnF2 also un-
dergoes a phase transition at 1.49 GPa, whose nature was
inconclusive. Since the transition in ZnF2 is accompanied by
an orthorhombic distortion of the lattice, we can interpret the
Eu1 mode softening in MnF2 as a precursor of a �incipient�
phase transition. Further insight on this transition is given by
measurements of the elastic properties in rutiles. Melcher38

showed that the c44 elastic constant in MnF2 has one
anomaly at TN and another, unrelated to magnetism, at lower

temperatures. Rimai39 observed a similar low-temperature
accident in the nonmagnetic rutile ZnF2 and concluded that it
was representative of a structural instability compatible with
ferroelectricity. Hence, although only new measurements
will be able to settle the issue, it is reasonable to expect that
the high-pressure transition in MnF2 is of �incipient� ferro-
electric character.

Figures 6 and 7 show that at the AFM transition, there is
a clear renormalization of the phonon spectra. Mode Eu3
shows an additional increase in its frequency below TN. This
is an effect compatible with the magnetostrictive kink ob-
served in the lattice volume, which decreases faster below
TN. There is no noticeable change in the behavior of phonon
Eu2. A puzzling behavior is observed for phonons Eu1 and
A2u. The phonon softening instability observed in mode Eu1
stops at TN and the frequency of this phonon increases nota-
bly with the appearance of the AF phase. Conversely, the
thermal evolution of mode A2u reverses and this phonon
shows a frequency softening below TN, which is at odds with
the lattice volume evolution. As no lattice parameter show a
sign change in their thermal behavior at TN, the sign change
in the slope of the thermal evolution of these two-phonon
modes is likely due to effects other than conventional mag-
netostriction, such as exchange between ions.

To grasp further insight on this phonon behavior, we can
look into ab initio results. The paramagnetic phase is not
accessible to ab initio calculations. We considered that the
average of calculations in the AFM and FM configurations
are representative of the paramagnetic phase. The difference
in the phonon frequencies between the AFM and “paramag-
netic” calculations are indicated by the vertical arrows in
Figs. 6 and 7. It is remarkable that not only do ab initio
calculations predict the correct magnitude for the phonon
frequency shifts but also they find the proper sign for these
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FIG. 6. �Color online� Evolution of the ab plane phonon fre-
quencies with temperature. The red arrows indicate the ab initio
predictions for the change in frequencies �numerically indicated as
the �� values� upon formation of an antiferromagnetic order. The
shaded area is the antiferromagnetic phase. For each vibration
mode, we represent the atomic motions of manganese and fluorine
ions. The dotted lines are guide to the eyes showing the high-
temperature extrapolations of the phonons behavior in the absence
of magnetic ordering.
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FIG. 7. �Color online� Evolution of the c axis phonon frequency
with temperature. The red arrow indicates the value of the change in
frequency when the antiferromagnetic order appears, as predicted
by ab initio calculations. The shaded area is the antiferromagnetic
phase. The atomic motions of manganese and fluorine ions are
given for this vibration mode. The dotted line is a guide to the eyes
showing the high-temperature extrapolation of the phonon behavior
in the absence of magnetic ordering.
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changes. It is important to remark that ab initio calculations
are done at 0 K. Hence, its predictions for phonon changes
are not due to lattice modifications but are representative of a
direct coupling of the phonons to the magnetic ordering,
without the need of mediation by elastic lattice distortions.

Ab initio calculations also yield the normal-mode eigen-
vectors. One can thus analyze the effect of the displacements
associated with these phonon modes on the magnetic cou-
pling constant. The infrared-active normal modes are shown
in Figs. 6 and 7. The thermal evolution of all phonons in the
paramagnetic phase, including the anomalous softening
when lowering the temperature of the Eu1 mode is probably
dominated by the elastic energy. Indeed, the same behavior is
observed in the Raman spectra of the B1g mode of MgF2
�Ref. 35� and the infrared response of the A2u mode of ZnF2
�Ref. 40�, both nonmagnetic fluorides, isostructural to MnF2.

In order to understand the sign change in the thermal evo-
lution of phonons Eu1 and A2u below TN, we have to look at
the free energy F=E−TS. In the AFM phase, the dominant
term in the changes in the free energy of the system is the
magnetic energy EM, given by Eq. �6�. Thus, minimization of
F goes through the minimization of EM. Let us look into the
contribution coming from phonons Eu1 and A2u to this term.
The Eu1 mode corresponds to a large displacement in the
a� +b� and a� −b� directions of the F atoms bridging two MnF6
octahedra. Let us define J0� as the magnetic coupling between
the Mn2 atom and the Mn1 atoms located at the crystallo-
graphic positions �0,0,0� and �0,0,1�; Ja�+b� as the coupling
between Mn2 and the Mn1 atoms located at �1,1,0� and
�1,1,1�; and Ja� as the coupling between Mn2 and the Mn1

atoms located at �1,0,0�, �1,0,1�, �0,1,0�. and �0,1,1�. Under a
Eu1 phonon displacement of amplitude u, the magnetic en-
ergy is modified as follows:

EM = − �2J0��u� + 2Ja�+b��u� + 4Ja��u�	�S�Mn1
· S�Mn2

�

= − �8J�0� + 2� �2J0�

�u2 �
u=0

u2��S�Mn1
· S�Mn2

� . �8�

J�0� is the value of the magnetic exchange with the atoms in
their equilibrium position. We should stress, again, that both
J�0� and the spin-correlation terms are negative because of
the AFM interaction. Using the perturbative expressions of
Table III one can show that Ja� does not depend on the
Eu1 displacement u that �J0� /�u=−�Ja�+b� /�u and that
�2J0� /�u2=�2Ja�+b� /�u2�0. In the AFM phase the magnetic
energy must be minimized, and thus, the modulus of the first
factor of Eq. �8� must increase. As the second derivative and
J�0� have opposite signs, increasing the modulus of the first
factor implies that the oscillation amplitude u must decrease.
In an equivalent view, one can note that the second deriva-
tive term acts as a correction to the full harmonic potential of
the phonon. For phonon Eu1 it introduces a positive correc-
tion to the effective phonon spring constant, i.e., the phonon
hardens, as observed in Fig. 6.

A similar analysis also explains why the A2u mode softens
when the temperature decreases in the AFM phase. The A2u
mode corresponds to displacements with opposite signs of
the Mn and F atoms along the c direction �see Fig. 7�. We

define J0� as the magnetic coupling between the Mn2 atom
and the Mn1 atoms located at �0,0,0�, �1,1,0�, �1,0,1�, and
�0,1,1�; and Jc� as the coupling between the Mn2 atom and the
Mn1 atoms located at �0,0,1�, �1,1,1�, �1,0,0�, and �0,1,0�.
Under a A2u displacement of amplitude v, the magnetic en-
ergy is modified as

EM = − �4J0��v� + 4Jc��v�	�S�Mn1
· S�Mn2

�

− �8J�0� + 4� �2J0�

�v2 �
v=0

v2��S�Mn1
· S�Mn2

� . �9�

Using again a rough evaluation of the perturbative
expression of J one finds that �J0� /�v=−�Jc� /�v and
�2J0� /�v2=�2Jc� /�v2�0. Because the second derivative and
J�0� here have the same sign, an increase in the displacement
amplitude v diminishes the value of EM. In the full harmonic
potential perspective, here the correction to the effective
phonon spring constant is negative, leading to the phonon
softening, in agreement with Fig. 7.

Our infrared data allow us to link the magnetic ordering to
changes in the dielectric constant of MnF2. The optical di-
electric constant is given by ��0�=��+�k	�k. In the absence
of any microwave excitations, it should be equal to the static
value obtained from electrical measurements. Our reflectivity
data do not show any extra excitation below the phonons
down to 10 cm−1 �300 GHz�. Figure 8 compares the static
dielectric constants, measured by Seehra41 at 10 kHz with the
zero-frequency limit of our optical data. The left panel shows
the ab-plane dielectric constant and the right panel the c axis
response. The solid squares are the “static” values from
Seehra41 �vertically shifted by −1, for clarity� and the open
circles are the optical dielectric constants. On the left panel,
we also show the thermal variation in the oscillator strength
for the lowest energy Eu1 mode �solid triangles and right-
hand scale�. Note that both scales in this figure cover the
same variation in values of �. It is then clear that all the

FIG. 8. �Color online� The left panel shows the ab plane dielec-
tric constant ��0� measured utilizing dielectric techniques by Seehra
�Ref. 41� �open squares� and zero-frequency optical extrapolation
�solid circles�. The right panel shows the same quantities for the c
axis. For clarity, the dielectric measurement was shifted by −1. The
blue arrows are the ab initio predictions for changes �� in ��0�
upon appearance of the antiferromagnetic order. The right-hand
scale in the left panel shows the Eu1 contribution to the dielectric
constant �solid stars� and the red arrow is the ab initio prediction for
the change in 	��Eu1�. Note that right and left scales in this panel
span the same range in values of �, indicating that all the in-plane
changes come from the Eu1 mode.
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temperature variations in the optical dielectric constant come
from the Eu1 phonon. This figure also shows that, within
15%, the static dielectric constant is build from phonon and
higher frequency excitations. The static and optical dielectric
constants agree very well below TN. In the paramagnetic
phase, there is a growing difference between these two val-
ues. Along the c axis both values increase with temperature
but the static dielectric constant increases faster. In the ab
plane the difference is also qualitative. The static dielectric
constant increases with temperature whereas the optical
value decreases. These discrepancies may be due to a differ-
ence in the quality of the sample but are more likely linked
to ionic conduction contributions to the dielectric constant in
the radiofrequency range, a common effect on fluorides.42,43

Nevertheless, in both polarizations, ��0�, measured by both
techniques, shows a kink at TN.

We can estimate the ab initio zero-frequency dielectric
constant from the calculated oscillator strengths. We made
the same comparison between a paramagnetic and AFM con-
figurations, as we did for the phonon frequencies. The pre-
dicted changes are shown as the vertical arrows in Fig. 8.
The predicted ab initio jump upon magnetic ordering is of
the same order of magnitude as the values measured. More
important, we find the correct sign for the changes in both
cases. The AFM order tends to decrease the dielectric con-
stant in the ab plane while it is increased along the c axis.

The panorama in MnF2 points toward instabilities that
favor a ferroelectric order. Ferroelectricity is not a common
property of fluorides. However, several compounds �ZnF2,
NiF2, and FeF2� show lattice instabilities that indicate the
appearance of an incipient ferroelectric order. Our x-ray data
indicate that lattice instabilities are indeed present in MnF2.
Infrared measurements show that the c-axis phonon softens
upon formation of the antiferromagnetic order. This soften-
ing goes together with an increase in the dielectric constant
along this direction. These effects are indicative of a possible
incipient ferroelectric behavior in MnF2. In this scenario the
differences between static and phononic dielectric constants
observed in Fig. 8 above 100 K could also be related to
zero-frequency ferroelectric fluctuations. However, dielectric
constant measurements at high frequencies as well as phonon
dynamic measurements under pressure and/or magnetic field
are necessary to confirm �or refuse� this picture. In any case,
understanding the phonon changes induced by the magnetic
ordering in MnF2 should bring new insights on the magne-
toelectric coupling in multiferroic materials.

V. CONCLUSIONS

In this paper we presented a detailed temperature-
dependent infrared study of the phonon renormalization ob-
served at TN in MnF2. We showed that the phonon tempera-
ture dependence and the lattice parameter changes across the
antiferromagnetic transition are well reproduced by ab initio
calculations, implying that the magnetic order dominates the
changes observed at TN. We find that phonons along the D4
axis and the tetragonal ab plane have opposite changes at TN
as predicted by the first-principles results. Our results show
that the dielectric constant of MnF2 is mostly from phonon

origin. Relaxation effects on the ab plane contribute strongly
to the dielectric constant in the paramagnetic phase. The
large change in the lattice parameters with temperature and
the phonon softening in the antiferromagnetic phase suggest
that MnF2 distortions induced by the magnetic order are
compatible with the ferroelectric instabilities observed in
TiO2 and FeF2 and other fluorides. We suggest that the phase
transition observed at 1.49 GPa �Ref. 37� could be of ferro-
electric order and so, MnF2 would qualify as an incipient
multiferroic.
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APPENDIX

In this paper, we limited our discussion of ab initio cal-
culations to the four infrared-active modes only. For com-
pleteness, Table IV gives the results of calculations for all
modes �infrared, Raman, and silent� in both FM and pseudo-
AFM configurations. These calculations are compared to the
experimental values determined at 5 K for the infrared �this
work� and Raman-active modes �Ref. 14�.

TABLE IV. Ab initio � point optical phonons frequencies
�in cm−1� for the FM and pseudo-AFM phases. The experimental
values were taken at 5 K from the present work �IR� and from Ref.
14 �Raman�.

Symmetry Activity

Ab initio Experimental

FM AFM This work Ref. 14

B1g Raman 96.2 97.8 56.1

B1u 136.2 136.4

Eu IR 175.2 178.2 158.4

A2g 238.9 241.1

Eg Raman 257.8 257.2 246.7

Eu IR 265.5 265.4 259.8

A2u IR 315.1 311.0 292.5

B1u 346.7 344.4

A1g Raman 365.8 368.7 346.8

Eu IR 387.7 394.6 367.0

B2g Raman 490.6 491.6 480.5
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