Isao H. Inoue

Salle C313 « Nobelium », Bat C, 3eme étage jeudi 21 mars à 14h00

SUPERCONDUCTIVITY ENHANCED
BY A FERROELECTRIC QUANTUM CRITICAL POINT

Yasuhide Tomioka, Naoki Shirakawa, Keisuke Shibuya, Isao H. Inoue
National Institute of Advanced Industrial Science and Technology (AIST) : Tsukuba 305-8565, Japan

SrTiO3 is a well-known insulator with a band gap of 3.3 eV and shows many interesting properties. Notably, due to the substantial dielectric constant ε 24,000 at low temperatures, the effective Bohr radius becomes extremely large ( 0.5 μm), driving the insulator to metal transition even at a very low carrier density of 2×1016 cm−3. Although ε is huge, SrTiO3 does not show ferroelectricity ; this is called a quantum paraelectric because the low- temperature phase is close to a quantum critical point (QCP). Studies on QCPs so far have revealed remarkable phenomena such as superconductivity, but only around magnetic QCPs. In this talk, I will focus on the non-magnetic counterpart : ferroelectric QCP of SrTiO3. We explore the relationship between the superconductivity and the ferroelectric QCP of SrTiO3. We have prepared high-quality Sr1−xLaxTi(16O1−z18Oz)3 single crystal and systematically investigated the La substitution of Sr as an alternative of introducing oxygen vacancies. The superconducting transition temperature Tc shows a dome-like behaviour against the carrier density n. Analysis of the data based on a theoretical model predicts an appearance of the ferroelectric QCP for Sr1−xLaxTiO3 around 3×1018 cm−3. The QCP raises the superconducting dome of Sr1−xLaxTiO3 upwards. Further enhancement of Tc( 0.6 K) is achieved by 18O exchange on the Sr1−xLaxTiO3 crystals. These findings provide a new knob for observing intriguing physics around the ferroelectric QCP. Details are given in the talk. (Full abstract with figures can be downloaded from <https://goo.gl/tGL67n> .)

Short Biography
Dr Isao H. Inoue received BSc, MSc, and DSc degrees in Physics from the University of Tokyo in 1990, 1992 and 1998, respectively. He became a researcher with tenure of the Electrotechnical Laboratory (ETL) in 1992 and a senior researcher in 1999. From 1999 to 2001, he was a visiting scholar at Cavendish Laboratory, University of Cambridge. In 2001, ETL was reorganised to AIST ; since then, he has been a senior researcher of the National Institute of Advanced Industrial Science and Technology (AIST). He has been investigating on a wide range of research field : from the strongly correlated oxides to the neuromorphic electronic devices.


Haut de page



À lire aussi...

Tommaso Gorni, ESPCI Paris

November 19, 02:00 PM, Paris Time (GMT +1). Paving the way for the ab initio description of FeSe The major role played by strong correlations in (…) 

> Lire la suite...

Nicolas Ubrig,Department of Quantum Matter Physics, University of Geneva

Nicolas Ubrig, jeudi 24 mai 2018, amphi Urbain à14h00 Valley and spin physics in atomically thin van der Waals materials The discovery of graphene (…) 

> Lire la suite...