Karin Dahmen, Department of Physics, University of Illinois at Urbana Champaign

Thursday June 30 at 2:00 pm (Paris time)

Room Boreau, building C, 2nd floor

Slowly-compressed nano-crystals, bulk metallic glasses, high entropy alloys, rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers, indicating an underlying nonequilibrium phase transition. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The analysis draws on tools from statistical physics and the renormalization group. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. Connections to neuron avalanches in the brain will also be discussed.

Haut de page



À lire aussi...

Mikhail Feigel’man, Landau Institute for Theoretical Physics

Oct. 21 at 2:00 pm (GMT+2) Paris time Theory of superconductivity due to Ngai’s mechanism in lightly doped SrTiO3 L.D. Landau Institute for (...) 

> Lire la suite...

Benoit Fauqué, College de France

Habilitation à diriger des recherches Le mercredi 2 juillet à 14h00 au Collège de France salle 4 Dilute metals at high magnetic (...) 

> Lire la suite...