Superconducting Parity Effect at The Anderson limit

What is the minimum size for a nanocrystal to be superconducting? In 1959, P.W. Anderson suggested that superconductivity could exists only when the energy interval between electronic levels is smaller than the superconducting energy scale, i.e. the superconducting gap, which corresponds to the binding energy of the Cooper pairs responsible for superconductivity. Until now, this remained a conjecture. However, using a Scanning Tunneling Microscope (STM) to study superconducting Lead (Pb) nanocrystals grown on the 2D electron gaz at the surface of Indium Arsenide, LPEM researchers have observed that Cooper pairing disappears when this level spacing became larger than this superconducting energy scale, demonstrating the validity of the Anderson criterion. This experiment establishes a new method for investigating nanocrystals in the regime of strong quantum confinement with promising perspectives for the study of electronic orders in the chemical limit, i.e. when the electronic spectrum of a solid becomes discrete.

• Superconducting parity effect across the Anderson limit”
S. Vlaic, S. Pons, T. Zhang, A. Assouline, A. Zimmers, C. David, G. Rodary, J.C. Girard, D. Roditchev, H. Aubin. Nature Comm. 10.1038/NCOMMS14549

Contact : herve.aubin (arobase)
Site Web :


See also...

Deux chercheurs du LPEM récompensés par le prix Langlois 2014

Emmanuel Lhuillier, ingénieur à Nexdot, start-up issue du LPEM, est récompensé pour ses travaux portant sur l’amélioration du couplage entre la lumière (...) 

> More...

Microcavity-enhanced energy transfer for biodetection

Schematic diagram: The incident blue light excites fluorescent nanocrystals ("quantum dots", QDs) placed under the surface of a polymer sphere a (...) 

> More...