Xiaokang Li,Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology,China

jeudi 6 décembre à 14h00
Amphi Schutzenberger

Anomalous Transverse Transport in non-collinear antiferromagnets
Mn3X(X=Sn, Ge)]

Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

The ordinary Hall effect, the transverse electric field generated by a longitudinal charge current in the presence of a magnetic field, is caused by the Lorentz force exerted by a magnetic field on charge carriers. In ferromagnetic solids, there is an additional component to this response (known as extraordinary or anomalous) thought to arise as a result of a sizeable magnetization. During the past decade, a clear link between the anomalous Hall effect (AHE) and the Berry curvature of Bloch waves has been established. [1,2]
Recently, following theoretical propositions[3,4], in a family of nonlinear antiferromagnets, Mn3X (X=Sn, Ge), almost with no magnetization, an unexpectedly large AHE has been detected at room temperature and attributed to a nonvanishing Berry [5-7].This observations have opened new venues to study the effects of Berry curvature and their potential applications at room temperature. Several others anomalous transverse responses , Thermoelectric[8,9], Thermal transport[9], and Magneto optic effect[10], had also been reported in this system.
We present, a study of electric, thermoelectric and thermal transport in Mn3X (X=Sn, Ge). The three anomalous transverse conductivities (Hall, Nernst, and Righi-Leduc) were quantified. The thermal and electrical Hall conductivities respect the Wiedemann-Franz law over the whole temperature range of study in Mn3Sn [9]. We also carried out a study of angle-dependent AHE shedding additional light to the origin of anomalous transverse flow and their link to the locus of the Weyl nodes[11].

1. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
2. D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
3. H. Chen, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014).
4. J. Kübler and C. Felser, Europhys. Lett. 108, 67001 (2014).
5. S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).
6. A. K. Nayak et al., Sci. Adv. 2 : e1501870 (2016).
7. N. Kiyohara, T. Tomita, and S. Nakatsuji, Phys. Rev. Appl. 5, 064009 (2016).
8. Ikhlas, M. et al. Nat. Phys. 13, 1085 (2017)
9. X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu and K . Behnia, Phys. Rev. Lett.119, 056601 (2017)
10. M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Nat. Phys. 13,1085 (2017).
11. X. Li, L. Xu, H Zuo, et al. arXiv preprint arXiv:1802.00277, 2018.

Haut de page

À lire aussi...

Kamran Behnia, CNRS/ESPCI, PSL Research University, Paris, France

LPEM Webinar, Friday June 19 at 2PM (Paris Time, GMT+2) by Kamran Behnia Vendredi 19 juin à 14h00 Transport of charge and entropy in a dilute (...) 

> Lire la suite...

Adriano Amaricci, théoricien de la SISSA

Jeudi 1 férier 2018 à 14h00 Amphi Urbain, Bâtiment N RdC “Resistive Switch in Correlated Insulators” The miniaturization trend in silicon-based (...) 

> Lire la suite...