Corentin Morice, University of Amsterdam, The Netherlands

March 18, 2021 02:00 PM Paris (GMT +1)

Gravitational horizons in low-dimensional quantum matter

We propose a class of lattice models realizable in a wide range of setups, and closely related to type-I to type-II transitions in Weyl semimetals.

Their low-energy dynamics exactly resembles Dirac fields subjected to gravitational backgrounds, including (anti-)de Sitter spacetime.

These models are simple 1D chains, where hopping is position-dependent and follows a power-law.

We find eternal slowdown upon approaching the origin of the lattice, which signals the formation of a black hole event horizon.

These findings pave the way for a new and experimentally viable mimicking of black hole horizons in topological semimetals.

— 


Haut de page



À lire aussi...

Carlo Trugenberger, SwissScientific Technologies, Geneva

April 08, 02:00 PM, Paris Time (GMT +2) Emergence by infinite symmetry, application to the Nernst effect After a generic review of the dynamical (...) 

> Lire la suite...

Christos Panagopoulos , Nanyang Technological University, Singapore

Jeudi 05 Avril 2018 à 14h00, Anphi Urbain, Bâtiment N RdC Evolution of chiral magnetic textures and their topological Hall signature in Ir/Fe/Co/Pt (...) 

> Lire la suite...