Nicolas Bergeal,LPEM

LPEM Webinar, Thursday June 26 at 2PM (Paris Time, GMT+2) by Nicolas Bergeal,

CNRS/ESPCI, Sorbonne Université, PSL Research University, Paris, France

Superconducting LaAlO3/SrTiO3 interfaces

The achievement of high-quality epitaxial interfaces involving transition metal oxides gives a unique opportunity to engineer artificial materials where new electronic phases take place. The discovery of a high mobility two-dimensional electron gas (2-DEG) confined in a quantum well at the interface between two insulating oxides LaAlO3 and SrTiO3 is probably one of the most prominent examples in the field. Unlike more conventional semiconductor based quantum wells,

A key feature of these electronic systems lies in the possibility to control their carrier density by electric field effect. In this talk, I will review several field-effect experiments realized on various types of LaAlO3/SrTiO3 interfaces both in back-gate and top-gate geometry. In particular, I will present recent resonant microwave transport measurements that allows extracting fundamental energy scales associated with superconductivity. Comparison between superconducting properties of LaAlO3/SrTiO3 heterostructures grown along different crystal orientations ((001) and (110)) will also be discussed. Finally, I will present the realization of top-gated LaAlO3/SrTiO3 devices whose physical properties, including superconductivity and Rashba spin-orbit coupling, can be tuned over a wide range of electrostatic doping, opening new perspectives for the realization of topological mesoscopic devices.


Haut de page



À lire aussi...

Maurice Chapellier, IJClab / Université Paris-Saclay

Thursday May 22 at 2:00 pm (Paris time) Room Holweck, building C, 1st floor Dilution refrigerators : history and techniques This seminar is aimed (…) 

> Lire la suite...

Gael Grissonnanche, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA

Mercredi 1er juin à 14h, Amphi Charpak Chiral phonons in quantum materials The thermal Hall effect has been proposed as a powerful tool to probe (…) 

> Lire la suite...