T. Kontos, LPA, Ecole Normale Supérieure,

Jeudi 8 Octobre 2015 14h
Amphi Holweck, Esc C,
1ème etage
Cavity quantum electrodynamics with carbon nanotubes : from atomic-like systems to condensed matter

Cavity quantum electrodynamics techniques allow one to probe or manipulate the electronic states of nanoscale circuits. Recently, cavity QED architectures have been extended to quantum dot circuits. These circuits are appealing since other degrees of freedom the traditional ones (e.g. those of superconducting circuits) can be investigated. I will show how one can use carbon nanotube based quantum dots in that context. In particular, I will focus on the coherent coupling of a single spin or non-local Cooper pairs to cavity photons [1].
Quantum dots exhibit also a wide variety of many body phenomena related to their fermionic contacts. The cQED architecture could also be instrumental for understanding them. One of the most paradigmatic phenomenon is the Kondo effect which is at the heart of many electron correlation effects. I will show that a cQED architecture has allowed us to observe for the first time the decoupling of spin and charge excitations in a Kondo system.

[1] J. J. Viennot, M.C. Dartiailh, A. Cottet and T. Kontos Science 349 408 (2015).

Haut de page

À lire aussi...

Matthieu Delbecq, Center for Emergent Matter Science RIKEN

Jeudi 26 Novembre 2015 14h Amphi Holweck, Esc C, 1ème etage Multiple spin qubits in semiconductor quantum dots subject to nuclear spin bath (...) 

> Lire la suite...

Joseph P. Heremans, Ohio State University

Jeudi 18 Juin 2015 14hJoseph P. HeremansAmphi Holweck, Esc C, 1ème etage The spin degree of freedom in thermoelectrics The recent decade has seen (...) 

> Lire la suite...