Aharon Kapitulnik

Jeudi 11 Mai 2017 à 14h00
Amphi Holweck, Esc C
1ème etage

TRANSPORT IN STRONGLY CORRELATED BAD METALS

Abstract :
The standard paradigm for transport in metals relies on the existence of quasiparticles. Transport coefficients such as electrical and thermal conductivities can then be calculated using e.g. Boltzmann equations. However, such an approach fails in the so-called bad metal' regime, when the quasiparticle mean free paths become comparable to the wavelengths of the electron and/or highest frequency phonon. Transport in non-quasiparticle regimes requires a new framework and has become a subject of intense theoretical and experimental efforts in recent years.  In particular, the diffusivity was singled out as a key observable for incoherent non-quasiparticle transport, possibly subject to fundamental quantum mechanical bounds. Following a review of previous experimental results on bad metallic behavior, we will introduce new results on transport in strongly correlated electron systems with strong electron-phonon interaction. These results suggest that when neither well-defined electron nor phonon quasiparticles are present, thermal transport exhibits a collective behavior of asoup’ of strongly coupled electrons and phonons characterized by a diffusion constant $D\sim v_B^2\tau$, where $v_B$ is the `soup’ velocity and scattering of both electrons and phonons saturate a quantum thermal relaxation time $\tau \sim \hbar/k_BT$


Haut de page



À lire aussi...

Emmanuel Flurin, Berkeley

Jeudi 7 Janvier 2016 14h Amphi Holweck, Esc C, 1ème etage Observing Topological Invariants Using Quantum Walks Classical random walks (…) 

> Lire la suite...

Mathieu Le Tacon, MPI Stuttgart

Jeudi 7 Novembre 2013, 14hAmphi Holweck, Esc C, 1ème etage Charge density waves and electron-phonon coupling in superconducting cuprates : (…) 

> Lire la suite...